数 学 問 題

- [1] ある式から $3x^2 2xy + y^2$ を引くところを、誤ってこの式を加えたので、答えは $x^2 2y^2$ となった。正しい答えは 1 である。
 - ① $-3x^2 + 2xy y^2$ ② $-2x^2 + 2xy 3y^2$ ③ $-5x^2 + 4xy 4y^2$ ④ $x^2 2y^2$
- [2] $\frac{3\sqrt{2}}{\sqrt{6}+\sqrt{3}} \frac{4\sqrt{3}}{\sqrt{6}+\sqrt{2}} + \frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$ を計算すると **2** である。
 - ① $-2\sqrt{6}$ ② $4\sqrt{3} 6\sqrt{2}$ ③ 0 ④ $4\sqrt{3} 2\sqrt{6}$
- [3] $a-b=3+\sqrt{5}$ 、 $b-c=3-\sqrt{5}$ のとき、 $a^2+b^2+c^2-ab-bc-ca$ の値を求めると 3 である。
 - ① 14 ② 16 ③ 32 ④ 64
- [4] $\frac{x+y}{5} = \frac{y+3z}{11} = \frac{5z-3x}{8} \neq 0$ のとき、x:y:z の比は 4 である。
- [5] $|x-\sqrt{2}| \le 10$ を満たす整数の和は 5 である。
 - ① 21 ② 30 ③ 38 ④ 102
- - ① 5 ② 8 ③ 9 ④ 10

[7] $x \ge y$ の小数第1位を四捨五入すると、それぞれ3と5になるという。この とき $A = -x + 2y$ のとり得る値の範囲は 7 である。								
① 1 < A < 3 ② 5 < A < 8 ③ 4.5 < A < 7.5 ④ 5.5 < A < 8.5								
[8] $f(x) = x^2 + 2x - 3$ のとき、 $f(a) - f(-a)$ の値は 8 である。								
① $-4a$ ② $4a-6$ ③ $4a$ ④ 6								
[9] x 軸と $(-2,0)$ 、 $(1,0)$ で交わり、 y 切片が -4 である x の 2 次関数は 9 である。								
① $y = -2(x-2)(x+1)$ ② $y = -2(x+2)(x-1)$ ③ $y = 2(x-2)(x+1)$ ④ $y = 2(x+2)(x-1)$								
[10] 2次関数 $y = ax^2 + 1$ のグラフを平行移動したグラフの頂点の座標は $(-2, 5)$ で、 $(-1, 9)$ を通るとき、この 2 次関数の方程式は 10 である。								
① $y = -4x^2 - 16x - 9$ ② $y = 4x^2 - 16x + 21$ ③ $y = 4x^2 + 16x + 9$ ④ $y = 4x^2 + 16x + 21$								
[11] 2つの2次関数 $y = (x-2)^2 + 5$ と $y = \frac{1}{2}x^2 + ax + b$ の頂点が一致するとき、								
a、bの値を求めると 11 である。								
① $a = -4, b = 13$ ② $a = -2, b = 7$ ③ $a = -1, b = 7$ ④ $a = 2, b = 7$								
[12] 2次関数 $y = x^2 - 2x + a(-3 \le x \le 2)$ の最大値が10のとき、定数 a の値を求めると								
$\bigcirc -5$ $\bigcirc 5$ $\bigcirc 3$ $\bigcirc 1$ $\bigcirc 4$ $\bigcirc 1$ $\bigcirc 1$								

	角升	形に内接する長ろ	方形 P	PQRSの面	積の最	大値は 1	3	である。
	1	4	2	6	3	8	4 1	. 2
[1	4]	sin(90° + θ) - ≥ 1 4	_		cos(9	0° + θ) + cos((90° –	·θ)を簡単にする
	1	$-2\cos\theta$	2	0	3	$2\sin\theta$	4 2	$2\cos\theta$
[1		$\sin\theta = \frac{8}{17} (0)$	° ≦€	9 ≤ 9 0°) ∅	のとき	$\tan(90^{\circ} + \theta)$	の値に	15で
		_ <u>1 5</u> 8	2	$-\frac{17}{15}$	3	$-\frac{8}{15}$	4	
[1		△ABCにおい 値は 16			B : si	nC = 2 : 3 :	4のと	$\frac{a^2+b^2-c^2}{(a+b-c)^2}$
	1	- 3	2	1	3	2	4	3
[1		△ABCにおい (をMとするとき						とし、辺BCの中]である。
	1	$2\sqrt{3}$	2	4	3	$3\sqrt{2}$	4	$\sqrt{19}$
[1	8]	半径5の円に内	接す	る正八角形の	つ面積の	18	であ	う る。
	1	$25\sqrt{2}$	2	5 0	3	$50\sqrt{2}$	4	1 0 0
[1								$p \in A$ とする $p \in A$ とする $p \in A$
	1	4	2	6	3	8	4	1 2

[13] 底辺BCが6cm、辺AB、ACが5cmの二等辺三角形ABCがある。この三

[20] 実数全体を全体集合とし、その部分集合を $A = \{x x^2 - 6x < 0\}$ 、							
$B = \{x x^2 > 4\}, C$	 =A∪Bとするとき	き、A∩Cを求めると	20 である。				
	$\{x 0 < x \le 2\} (3)$	$\{x 0 < x < 6\}$					
[21] 500円硬貨、100円硬貨、50円硬貨を何枚かずつ使って、ちょうど 600円の金額を支払う方法は 21 通りある。							
① 7	2 8	3 9	④ 1 0				
			6個のいすに座らせると 22 通りである。				
① 240	2 480	3 600	④ 7 2 0				
[23] 1から9までの番号札9枚から4枚を取り出して1列に並べ、4桁の整数をつくる。このとき、整数が奇数になる確率は 23 である。							
	② $\frac{1}{2}$	$3 \frac{5}{9}$	$(4) \frac{2}{3}$				
[24] 赤球3個、白球4個、黒球5個が入っている袋から3個を取り出すとき、 赤球が少なくとも1個入っている確率は 24 である。							
	$2 \frac{34}{55}$	$3 \frac{39}{55}$	$ \underbrace{3 \ 7}_{4 \ 4} $				
[25] A、B2人が	試合を行う。Aが胴	券つ確率は毎試合 $\frac{1}{3}$	であるとする。この試合				
	たものを勝ちとする 25 である		行わなくてもBの勝利が なないものとする。				
① $\frac{8}{27}$	② $\frac{16}{27}$	$3 \frac{8}{9}$	$4 \frac{73}{81}$				