数 学 問 題

[1] $-\frac{1}{4}x^2 + \frac{1}{5}xy + y^2 - (-\frac{1}{2}x^2 - \frac{1}{3}xy + \frac{1}{5}y^2)$ を計算すると 1 である。

$$2 \frac{1}{4}x^2 - \frac{2}{15}xy + \frac{6}{5}y^2$$

$$4 x^2 + 8xy + 4y^2$$

[2] $\mathbf{x} = \frac{1}{\sqrt{5}-2}$ 、 $\mathbf{y} = \frac{1}{\sqrt{5}+2}$ のとき、 $\mathbf{x}^3 + \mathbf{y}^3$ の値を求めると **2** である。

- ① 18
- ② $34\sqrt{5}$
- ③ $36\sqrt{5}$
- (4) $46\sqrt{5}$

[3] $\sqrt{4+\sqrt{15}}-\sqrt{3-\sqrt{5}}$ の二重根号をはずして簡単にすると 3

③
$$\frac{\sqrt{5}+\sqrt{3}}{2}$$

①
$$\frac{\sqrt{6}-\sqrt{2}}{2}$$
 ② $\frac{\sqrt{3}+1}{2}$ ③ $\frac{\sqrt{5}+\sqrt{3}}{2}$ ④ $\frac{\sqrt{6}+\sqrt{2}}{2}$

[4] $(x^2-x-3)(x^2-x-5)-3$ を因数分解すると 4 である。

①
$$(x-3)(x-2)(x-1)(x+2)$$

①
$$(x-3)(x-2)(x-1)(x+2)$$
 ② $(x-2)(x-1)(x+2)(x+3)$

$$(3) (x-3)(x-2)(x+1)(x+2)$$

③
$$(x-3)(x-2)(x+1)(x+2)$$
 ④ $(x-2)(x+1)(x+2)(x+3)$

 $\begin{bmatrix} 5 \end{bmatrix}$ $a+b \leq 0$, $a-b \geq 0$ $\emptyset \geq 3$,

 $\sqrt{a^2 + 2ab + b^2} + \sqrt{a^2 - 2ab + b^2}$ を簡単にすると 5 である。

- (1) -2a 2b (2) -2b
- ③ 2*a*
- $\stackrel{\text{\tiny }}{\text{\tiny }}$ 2b

[6] 不等式 $3-x \le 2x \le x+a$ を満たす整数 x がちょうど 4 個存在するような 定数 a の値の範囲は 6 である。

- ① $2 \le a < 5$ ② $3 \le a < 4$ ③ $4 \le a < 5$ ④ $5 \le a < 6$

[7] 3つの数 $A = \frac{4}{6}$ である。		C =√51の大小を判別	定すると		
① B <a<c< td=""><td>② B<c<a< td=""><td>③ C<b<a< td=""><td>④ C<a<b< td=""></a<b<></td></b<a<></td></c<a<></td></a<c<>	② B <c<a< td=""><td>③ C<b<a< td=""><td>④ C<a<b< td=""></a<b<></td></b<a<></td></c<a<>	③ C <b<a< td=""><td>④ C<a<b< td=""></a<b<></td></b<a<>	④ C <a<b< td=""></a<b<>		
[8] 2次方程式 (a² - 定めると 8		α+2=0 が重解をも	っつように、 <i>a</i> の値を		
① $a = -1$			④ $a = 1$		
[9] x および y の値に	よって決まる式 $f(x)$	x,y)が			
$f(x,y) = \begin{cases} 2x(x) \\ x + y(x) \end{cases}$		ている。このとき 、 ƒ(- 1,3)の値は		
① -6	② -2	3 1	4 2		
[10] 3点(2,0)、	(0, 2), (-2, -4)	を通る2次関数は	10 である。		
	2 2	$y = -x^2 + x - 2$			
$ 3 y = -x^2 + x + $	2 4	$y = x^2 + x + 2$			
[11] 2つの2次関数 $y = 2x^2 - 4x$ と $y = -x^2 + ax + b$ の頂点が一致するとき、 定数 a , b を求めると					
① $a = -2, b = -3$		② $a = -2, b = 3$			
③ $a = 2, b = -3$		$(4) \ a = 2, b = 3$			
$[1\ 2]$ 点 $(-2,\ 6)$ を通る放物線がある。この放物線を x 軸方向に 4 、 y 軸方向に -5 だけ平行移動すると、点 $(1,\ 0)$ を頂点とする放物線になるという。もとの放物線の方程式は $1\ 2$ である。					
	-4	$y = x^2 - 8x + 11$			
$ 3 y = x^2 + 6x +$	4		リハ共5-2		

[13] 放物線 $y = -2x^2 + x$ が常に直線 $y = 3x + 2a$ より下側にあるような a の値の範囲は 13 である。					
① $a > -\frac{5}{1.6}$	② $a < \frac{1}{8}$		(4) $a > \frac{1}{4}$		
$[14]$ $\sin \theta + \cos \theta$	os θ=√ 2 のとき、tai	$1\theta + \frac{1}{\tan \theta}$ の値は	14 である。		
① $\frac{1}{2}$	2 1	3 2	④ 3		
[15] cos 160°	'–cos 110° + sin 70°	' – sin 20°の値は	15 である。		
① 0	② 2 sin 20°	3 1	$4 2 \sin 20^{\circ} + 2 \cos 20^{\circ}$		
[16] \triangle ABCにおいて、 $a=\sqrt{3}$, $b=\sqrt{2}$, $A=60^\circ$ のとき、Bの大きさは 16 である。					
① 30°	② 45°	③ 60°	4 75°		
[17] \triangle ABCにおいて、 $CA=6$ 、 $B=45^\circ$ 、 $C=60^\circ$ のとき、BCの長さは 17 である。					
① 6	② $3+3\sqrt{2}$	③ $3+3\sqrt{3}$	$ 4 3\sqrt{3} + 3\sqrt{2} $		
	において、AB=6、 交わる点をDとすると	-	20°のとき、∠Aの2等分線 18 である。		
① 2	② $\frac{12}{5}$	3 3	$ \underbrace{4}_{5} \frac{1 \ 2\sqrt{3}}{5} $		
[19] $A = \{n \mid n \text{ id } 16 \text{ o}$ 正の約数 $\}$ 、 $B = \{n \mid n \text{ id } 20 \text{ o}$ 正の約数 $\}$ $C = \{n \mid n \text{ id } 8 \text{ id } F \text{ o}$ 正の偶数 $\}$ とする。このとき集合 $(A \cap B) \cup C$ は					
① {2,4}	② {1, 2, 4, 6, 8}	③ {1, 2, 4, 8, 16}	④ {1, 2, 4, 5, 10, 20} 「リハ共5-3		

わち1, 2, 3, 10, 11, 12, 13, 20, 21, 22,・・・ このとき、222は 20 番目にある。					
① 27	2 36	3 42	4 8		
[21] 1つのさいころを続けて8回投げるとき、1の目が3回、2の目が3回、3の目が2回出る場合は 21 通りある。					
① 280	2 560	3 720	4 1120		
[22] 袋の中に7個の白玉と3個の黒玉がある。この中から3個を取り出したとき、白 玉が2個以上はいっている確率は 22 である。					
	② $\frac{7}{24}$	$3\frac{11}{15}$	$4 \frac{49}{60}$		
[23] 2本の当たりくじを含む10本のくじがある。この中からA、B、Cの3人がこの順に1本ずつくじを引くとき、Bの当たる確率は 23 である。ただし、引いたくじはもとに戻さないとする。					
① $\frac{1}{5}$	② $\frac{4}{15}$	$3\frac{1}{3}$	$4\frac{2}{5}$		
$\begin{bmatrix} 2 & 4 \end{bmatrix}$ A、B、Cの3人がある的に向かって 1 つのボールを投げるとき、的に当たる確					
率はそれぞれ $\frac{3}{4}$, $\frac{2}{3}$, $\frac{2}{5}$ である。 A 、 B 、 C がそれぞれ 1 つのボールを投げると					
き、Aを含めた	こ2人だけが的に当	áたる確率は 2	4 である。		
	② $\frac{3}{10}$	$3\frac{2}{5}$	$4) \frac{7}{15}$		
[25] 1つのさいころを5回投げるとき、3の倍数の目が2回以上出る確率は					
2 5	である。				
			④ $\frac{163}{243}$ [リハ共5-4]		

[20] 4種類の数字0, 1, 2, 3を用いて表される自然数を小さい順に並べる。すな